
Theory of the Frenkel–Debye boundary layer at the (111) surface of pure CaF2

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2003 J. Phys.: Condens. Matter 15 5801

(http://iopscience.iop.org/0953-8984/15/34/310)

Download details:

IP Address: 171.66.16.125

The article was downloaded on 19/05/2010 at 15:06

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0953-8984/15/34
http://iopscience.iop.org/0953-8984
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


INSTITUTE OF PHYSICS PUBLISHING JOURNAL OF PHYSICS: CONDENSED MATTER

J. Phys.: Condens. Matter 15 (2003) 5801–5820 PII: S0953-8984(03)61069-6

Theory of the Frenkel–Debye boundary layer at the
(111) surface of pure CaF2

Heinz Dabringhaus1,3 and Mikhail F Butman2

1 Mineralogisch-Petrologisches Institut, Universität Bonn, Poppelsdorfer Schloss,
D-53115 Bonn, Germany
2 Department of Physics, State University of Chemical Sciences and Technology,
Prospekt Engelsa 7, 153460 Ivanovo, Russia

E-mail: h.dabringhaus@uni-bonn.de

Received 13 March 2003, in final form 16 July 2003
Published 15 August 2003
Online at stacks.iop.org/JPhysCM/15/5801

Abstract
The present paper is concerned with a theoretical study of the properties of the
Frenkel–Debye boundary layer at the (111) surface of pure (undoped) CaF2,
a crystal with anti-Frenkel defects, i.e. with anion vacancies and interstitials.
The study is based on theoretical determinations of the adsorption energies of
the fluorine ion at the terrace, step and kink sites on the surface, which are,
together with the assumption of experimental step distances and theoretical
kink concentrations, necessary pre-requisites for a quantitative description
of the surface charge compensating that of the space-charge region. The
results show that, for realistic surface conditions, the surface and space
charges, and with them the potential between surface and bulk, are reduced
considerably compared with those for an unlimited number of accessible
surface sites. Nevertheless, on approaching the surface a strong increase in the
anion vacancy concentration against that of the bulk still exists, which should
lead to an increased ion conductivity in near-surface regions and thin fluorite
layers.

1. Introduction

It was first pointed out by Frenkel [1] and later, independently, by Lehovec [2] that near the
surface of ionic crystals a space-charge region exists, this charge being compensated by a
charge of opposite sign on the surface. Because the lateral extension of this electric dipole
layer is of the order of a Debye length this layer is denoted as the Frenkel–Debye (FD) layer. Its
origin, fundamentally, can be ascribed to differences in the free energies of formation of point
defects such as cation and anion vacancies in the case of Schottky disorder and as vacancies
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and interstitials for Frenkel disorder. While in the bulk of the crystal, due to the condition of
electrical neutrality, the charges of the different point defects must cancel out, in the immediate
proximity of the surface their mole fractions adjust independently from each other with respect
to their individual free formation energies. Connected with the FD layer is an electrical field
perpendicular to the surface, which ensures a smooth transition between the near-surface and
bulk mole fractions of the defects.

Later on, the theory of the FD layer was refined and extended to the case of divalent cation
additives in NaCl-type crystals with Schottky disorder by Kliewer and Koehler [3]. The effect
of a segregation of the impurities at the surface was considered by Blakely and Danyluk [4].
Kliewer and Koehler [3] and Margvelashvili and Saralidze [5] calculated the properties of
thin layers, i.e. of crystals with a limited thickness in one dimension and infinite extensions
in the other two, in which the electric potential is reduced due to the overlap of the space-
charge clouds at both surfaces. Kliewer [6] applied the theory to the case of Frenkel disorder.
Eshelby et al [7] showed that space-charge regions should exist also around inner surfaces,
i.e. the cores of dislocations, of ionic crystals. Poeppel and Blakely [8] pointed to the fact that
the energies involved in the creation of the point defects are not unique properties of the crystal
bulk but depend specifically on the features of the surface. Among others, the finite number of
surface sites, at which the excess ions on the surface are adsorbed, must be taken into account.
This effect should lead to a strong reduction of the space-charge potential, especially at higher
temperatures, so that the results of Lehovec [2] and Kliewer and Koehler [3] represent limiting
cases only.

Although the theory of the FD layer has been studied under a variety of aspects, as far as
is known to the present authors, until now no attempts have been made to base it on realistic
features of the surface, i.e. on concrete values of the binding energies of the excess ions at
the different surface sites, kinks, steps and terraces, as well as on actual, i.e. experimentally
available, densities of these sites. In a series of studies we currently investigate the growth
and evaporation of CaF2 crystals [9–11]. CaF2 is, as the most prominent representative of
crystals with the fluorite structure, not only of basic scientific interest, but also a material
of great technological importance. This concerns, for example, bulk growth of large CaF2

crystals for nano-lithography, see, e.g., [12], as well as the formation of thin epitaxial layers
on semiconductors: above all, because of the low misfit on silicon [13, 14]. Within our studies
we have recently also carried out theoretical determinations of the adsorption energies of the
CaF2 molecule at different sites on the (111) surface of the CaF2 crystal [15] as well as of
diffusion pathways on the terrace [16]. CaF2 is known to possess anti-Frenkel disorder [17],
which means that fluorine ions are removed from their normal lattice positions into interstitial
sites located in the vacant cubes of the cubic primitive fluorine sublattice, i.e. in those ones
which are not occupied by calcium ions. It suggests we extend our theoretical calculations
to the case of the adsorption of the F− ion at the different surface sites and to lay in this way
the base for a realistic determination of the features of the FD layer for this important type of
crystal.

In the following we will at first develop the theory of the FD layer for a fluorite-type
crystal with anti-Frenkel defects in thermodynamic equilibrium. We will then focus on results
of the calculations of the adsorption energies of fluorine ions on the (111) surface of CaF2

and finally give a description of the properties of the FD surface layer at the (111) surface
of a pure CaF2 crystal under consideration of experimentally accessible step distances at the
surface. Additionally, the present studies, because of their importance for the ion conductivity
of nano-crystalline CaF2 material [18] as well as for the case of epitaxial layers, for example,
on semiconductors (see above), will be extended to the case of thin CaF2 layers with free (111)
surfaces.
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2. Theory of the Frenkel–Debye boundary layer for a fluorite-type crystal

2.1. Semi-infinite crystal

In a fluorite-type crystal with anti-Frenkel disorder anions can be removed from their normal
lattice sites and put into interstitial sites as well as adsorbed at specific sites on the surface. As
such surface adsorption sites the positions at kinks, steps and terraces come into question. The
semi-infinite crystal under consideration extends from x = 0 (surface) to x = ∞ and from
−∞ to ∞ in the y and z directions. The total Gibbs free energy of this disordered crystal may
be expressed as

G = G0 +
∫ ∞

0

{
ni(x)Ff + 1

2 ρ(x)�(x)

− kT ln
(2Nb)!

[2Nb − nv(x)]! nv(x)!
− kT ln

Nb!

[Nb − ni(x)]! ni(x)!

}
dx

+ nk Fk + nl Fl + nt Ft − kT ln
Nk!

(Nk − nk)! nk!

− kT ln
Nl !

(Nl − nl)! nl!
− kT ln

Nt !

(Nt − nt)! nt!
, (1)

where the first term, G0, on the right side of equation (1) gives the energy of the perfect
crystal, the integral term describes the Gibbs free energy of the FD layer and the remaining
terms represent the contributions of the surface. Here, Nb is the number of molecular units
per volume unit. While the number of accessible interstitial sites is equal to Nb, the number of
regular anion sites corresponds to 2Nb. Nk, Nl and Nt are the available kink, step (= ledge) and
terrace sites on the surface per unit of area. The actual concentrations of the anion vacancies
and interstitials in the bulk are represented by nv and ni, respectively, and those of the anions
at kink, step and terrace sites on the surface by nk, nl and nt . The free energy for creating
a Frenkel defect, i.e. for taking an anion from a normal bulk site into an interstitial site, is
denoted as Ff . The free energies for moving anions from normal bulk sites to kink, step and
terrace sites are Fk, Fl and Ft , respectively. �(x) denotes the potential in the FD layer and
ρ(x) the space-charge density.

For charge neutrality of the crystal the space-charge in the FD layer∫ ∞

0
ρ(x) dx =

∫ ∞

0
e [nv(x) − ni(x)] dx, (2)

where e is the elementary charge, must be compensated by a surface charge

σ = −e (nk + nl + nt) (3)

of opposite, here always negative, sign (compare section 3.2), i.e.

nk + nl + nt −
∫ ∞

0
[nv(x) − ni(x)] dx = 0. (4)

In the above equations, as usual, a positive elementary charge is assigned to the anion vacancy,
while all other species carry negative elementary charges. The potential in the space-charge
region is connected with the vacancy and interstitial concentrations by Poisson’s equation:

d2�(x)

dx2
= −4π

ε
ρ(x) = 4πe

ε
[ni(x) − nv(x)], (5)

where ε is the static dielectricity constant.
The minimization of the Gibbs free energy given in equation (1) and the solution of the

electrostatic problem connected with it are described in appendix A. Finally, an equation for
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the potential difference between surface and bulk, �∞, is achieved, which may be solved
numerically:(√

2NbεkT

πe2

)1/2

exp

(
− Ff

4kT

)
sinh

(
e�∞
2kT

)
= Nk

[√
2 + exp

(
Fk − Ff/2 + e�∞

kT

)]−1

+ Nl

[√
2 + exp

(
Fl − Ff/2 + e�∞

kT

)]−1

+ Nt

[√
2 + exp

(
Ft − Ff/2 + e�∞

kT

)]−1

. (6)

With a knowledge of �∞, from equation (A.19) in appendix A, using (A.12) and (A.13),
the course of the potential �(x) in the space-charge layer, and with this the dependence of
the vacancy and interstitial concentrations on the distance from the surface, x , as well as the
respective surface concentrations, can be calculated:

nv(x) = √
2 Nb exp

(
− Ff/2 + e�(x) − e�∞

kT

)

ni(x) = √
2 Nb exp

(
− Ff/2 − e�(x) + e�∞

kT

)

nk = Nk

{
1 +

1√
2

exp

(
Fk − Ff/2 + e�∞

kT

)}−1

nl = Nl

{
1 +

1√
2

exp

(
Fl − Ff/2 + e�∞

kT

)}−1

nt = Nt

{
1 +

1√
2

exp

(
Ft − Ff/2 + e�∞

kT

)}−1

.

(7)

2.2. Thin crystal layer

In the present section the above derivation for a semi-infinite crystal is extended to the case
of a thin layer of a fluorite-type crystal. The layer, width in x direction = 2L, should have
free (111) surfaces at x = 0 and 2L. The extension in the y and z directions is assumed to be
infinite. Here, the potential has an extremum at the middle plane, x = L, and the boundary
condition (A.16) must be replaced by

d�(x)/dx |L = 0. (8)

The treatment of this problem (see appendix B) leads to an equation which connects the
potential �L at the middle plane of the layer with the parameter e�̃∞:(

NbεkT√
2πe2

)1/2

exp

(
− Ff

4kT

){
cosh

(
e�̃∞
kT

)
− cosh

(
e�̃∞ − e�L

kT

)}1/2

= −
{

Nk

[√
2 + exp

(
Fk − Ff/2 + e�̃∞

kT

)]−1

+ Nl

[√
2 + exp

(
Fl − Ff/2 + e�̃∞

kT

)]−1

+ Nt

[√
2 + exp

(
Ft − Ff/2 + e�̃∞

kT

)]−1}
. (9)

With the knowledge of this dependence equation (B.3) can be evaluated, which yields the
dependence of the potential in the layer, �(x), on the distance from the surface, x , and
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with it also the vacancy and the interstitial concentrations as a function of x . The surface
concentrations could be already calculated with �̃∞ using equation (7) correspondingly.

3. The adsorption of fluorine ions at the (111) surface of CaF2

3.1. Characterization of the (111) surface of CaF2

The application of the above theory to a specific crystal surface, here the (111) surface of CaF2,
demands a knowledge of its properties, above all of the densities of step and kink sites as well
as of the determination of the energies for the adsorption of the excess surface anions in the
respective surface sites.

The CaF2 structure (space-group: Fm3̄m; lattice constant a0 = 0.5463 nm [19], number
of molecules per cm−3: Nb = 2.457×1022) may be considered as a sequence of F−–Ca2+–F−
triple layers stacking in the [111] direction. In the bulk of the crystal the spacing of these triple
layers amounts to a0/

√
3 = 0.3154 nm and the distance of the upper and lower fluorine layer to

the intermediate calcium layer to a0/(4
√

3) = 0.0789 nm. (111) is the cleavage face of CaF2.
It is, however, also the growth face under clean, i.e. vacuum, conditions [10]. The relaxation
of the (111) surface is small. It concerns essentially the outermost surface triple layer. Values
for the surface relaxation are given in [20]. The relaxation of the outermost surface layer has
the effect that the potential above the surface, at a distance, in which the influences of the
individual surface ions cancel out each other, adopts a constant value of �out = +0.354 V,
instead of a vanishing potential for an unrelaxed surface.

The number of terrace sites, at which a fluorine ion can adsorb (see section 3.2), equals
the number of calcium sites, which amounts to

Nt = 4(
√

3 a2
0)

−1 = 7.74 × 1014 cm−2. (10)

Since the experimental step distance is usually large relative to the smallest possible step
distance of

√
3/8 a0, the number of terrace sites is only negligibly decreased by the presence

of steps.
Steps on the thermally activated (111) surface run in the 〈110〉 directions [9]. These steps

are of the so-called I type [9]. They can be regarded as small {110} mini-facets. Relaxations
of the ions at the 〈110〉-I step are again small. Values for the coordinates of the relaxed step
ions can also be taken from [20]. The step distance depends on the pre-treatment of the surface
and the temperature. On cleaved surfaces, the steps, which usually have a height of one triple
layer, run predominantly in the 〈110〉 and 〈211〉 directions. Step distances were determined
to be between 40 and 80 nm [9]. The step distance varies further with the specific location on
the surface. It depends, above all, on the local dislocation density. Cleavage topographies are
maintained up to temperatures of about 820 K. Above this temperature the cleavage topography
changes into a topography with almost triangular islands [9]. Here, only 〈110〉 steps of the
type I are found. An increase of the temperature up to 1050 K leads to a progressive flattening
of the surface, with step distances increasing from 20 to 100 nm. Above 1050 K at a free
surface, evaporation starts, which leads again to a decrease of the step distances. For surfaces
grown at a temperature of 1055 K and a saturation ratio of 354, 〈110〉-I steps were found to
be arranged in growth hills with closed step lamella [11]. Here the step distance amounted to
about 60 nm. Summarizing these different results, one comes to the conclusion that the step
distances on the CaF2(111) surface at experimentally accessible conditions should lie in the
range λ = 10–100 nm, corresponding to densities of step sites of

Nl = √
2/(a0λ) = 2.6 × 1013 − 2.6 × 1012 cm−2. (11)
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Figure 1. Schematic outline of the first triple layer of the (111) surface of CaF2 in a top view.
Small grey circles, Ca2+ ions; large grey circles, ions Fu of the upper fluorine layer; large hatched
circles, ions Fl of the lower fluorine layer of the first TL. Ions of the chosen terrace adregion are
enclosed by the broken line. The fluorine adion is indicated as a large white circle. From symmetry
reasons for the adion only those positions above the grey marked triangle need to be considered.

The configuration of the kink at a 〈110〉-I step was determined in [15]. The formation energy
resulted as Ek

f = 0.47 eV. With this the temperature dependence of the kink density on the
(111) surface can be described as

Nk = 2Nl exp(−Ek
f /kT ) = 2Nl exp(−5.487 × 103/T ) cm−2. (12)

3.2. Determination of adsorption positions and energies

The FD theory starts with the assumption that an excess number of ions of one kind is adsorbed
on the surface. In the case of a calcium fluoride crystal this concerns the fluorine ion.
For CaF2(111) values of the adsorption energies of the fluorine adion, F−

ad, at the different
surface sites (terrace, step and kink) are not known until now. We have therefore performed
corresponding calculations subsequently to calculations of adsorption energies of the CaF2

molecule at these positions [15]. An important factor in such calculations is the consideration
of additional relaxations of ions of the crystal due to interactions with the adsorbed ion.
Since these relaxations concern, in essence, ions in the vicinity of the adsorbed ion, so-called
adsorption regions, in brief: adregions, around the adion were defined, in which the ions of
the crystal were allowed to adjust their positions to new minimum values of the total potential
energy. As an example, figure 1 (compare also table 1) shows the adregion defined for the
calculation of the adsorption on the terrace. This adregion comprises 12 ions of the upper
fluorine layer (Fu1–Fu12), 12 ions of the lower fluorine layer (Fl1–Fl12) and 13 ions of the
intermediate calcium layer (Ca1–Ca13), in all 37 ions of the uppermost triple layer of the
crystal. By varying the sizes of the adregions it was shown that the chosen extensions (see
table 2) were sufficient to calculate the relaxation energies to an overall accuracy of about 3%.
Ions of the second triple layer, i.e. the layer below the topmost TL, were not considered in the
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Table 1. Position of the F− adion at the terrace of CaF2(111) as well as initial and final (x , y,
z) positions (compare figure 1) of the ions of the adregion, first and second lines, respectively.
The r are distances of the ions of the adregion from the adion in the final position, with �r their
total displacements. Coordinates are given as normalized values with respect to the lattice constant
a0. Ions which are symmetrical to the listed ones with the same r and �r values are given in
parentheses. Ions which are only nearly symmetrical (because of the non-central symmetry of the
adregion) are given in brackets.

x y z r �r

Fad 0.0 −0.0003 0.4430
Ca4 0.0 0.0 −0.0033

0.0 −0.0002 0.0647 0.3783 0.0680
Ca1 (Ca2) [Ca3, Ca5–Ca7] −0.3536 −0.6124 −0.0033

−0.3510 −0.6076 −0.0016 0.8305 0.0056
Ca8 [Ca9–Ca13] 0.0 −1.2247 −0.0033

0.0 −1.2186 −0.0019 1.2970 0.0063
Fu2 [Fu4, Fu5] 0.0 −0.4082 0.1302

0.0002 −0.4364 0.1114 0.5478 0.0339
Fu1 (Fu3) [Fu6] −0.7071 −0.4082 0.1302

−0.7182 −0.4150 0.1309 0.8862 0.0130
Fu7 (Fu8) [Fu9–Fu12] −0.3536 −1.0206 0.1302

−0.3571 −1.0261 0.1341 1.1293 0.0076
Fl2 (Fl3) [Fl5] −0.3536 −0.2041 −0.1461

−0.3661 −0.2115 −0.1441 0.7235 0.0147
Fl1 [Fl4, Fl6] 0.0 −0.8165 −0.1461

0.0 −0.8321 −0.1555 1.0247 0.0182
Fl7 (Fl8) [Fl9–Fl12] −0.7071 −0.8165 −0.1461

−0.7074 −0.8212 −0.1491 1.2349 0.0056

Table 2. Adsorption energies Ead (eV) of a fluor ion at the terrace (T), step (L) and kink (K)
positions on the CaF2(111) surface. Nad: number of ions in the adregion; Eint: interaction energy
of the F− adion with the crystal; E rel

reg: relaxation energy of the adregion; Ead: total adsorption
energy.

Nad Eint E rel
reg Ead

T 38 −3.939 1.349 −2.590
L 36 −4.396 0.773 −3.623
K 32 −6.247 1.896 −4.351

adregions because their relaxations will be small. This is caused, on the one hand, by the small
relaxations of the fluorine ions Fl of the topmost TL (see table 1). Further, each triple layer,
as an F−–Ca2+–F− layer sequence, is itself energetically saturated to some extent. It should
be noted, in addition, that in the present calculations, as in the earlier determinations of the
adsorption of the CaF2 molecule [15], no periodic boundary conditions were used, because
this may lead to errors in the Coulomb energy. This will be true all the more for a charged cell
as in the present case.

Calculations of the total interaction energies were based on the Coulomb and a nearest-
neighbour interaction potential:

Vab(r) = qaqb

r
+ Aab exp

(
− r

ρab

)
− Cab

r6
. (13)

Here, r is the distance between ions a and b, which have the charges qa and qb, and A, ρ

and C are parameters [21], compare also [15]. Virtually the same potential was applied by
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Dornford-Smith and Grimes to study vaporization mechanisms of CaF2 nano-crystallites [22].
These authors showed that with this potential for the free molecule as well as for the CaF2 crystal
results are obtained which are in good correspondence to quantum mechanical calculations.
In [9] we showed that with the above potential experimental features of the free CaF2 molecule
can be well reproduced. Special ionic polarization according to a shell model [23] was not
considered in our calculations. Owing to the large calculational complexity this is, however,
often done in static calculations of this kind (compare [22]). A subsequent determination of
the induced dipole moment of the fluorine in its equilibrium adsorption position on the terrace
showed that the electrical energy associated with it can indeed be neglected against the other
terms, especially the energy resulting from the relaxation of ions of the adregion.

The Coulomb energy was calculated for a thin slab, comprising four triple layers of
infinite extension parallel to the surface. This slab was thick enough to achieve an accuracy
of 10−5 eV. The calculations were started with completely relaxed terrace, step and kink sites
without adsorption (‘crystal relaxed’ positions). The fluorine ion was initially positioned above
a calcium ion of the uppermost triple layer close to the centre of the respective adregion. The
adion, as well as the ions of the adregion, were allowed to relax their positions under the action
of the potential modified by the adion as well as by additional displacements of the ions of the
adregion. In particular the Coulomb interaction between the adion and the ions of the adregion
and of these ions with the remaining crystal was calculated

(i) by an Ewald summation over the CaF2 slab [24, 25] with all ions being in their initial
‘crystal relaxed’ positions,

(ii) subtracting from this the interactions with the ions of the adregion in these positions, and
(iii) adding the corresponding interactions where the ions are in their modified ‘adion relaxed’

positions.

For asymmetrical regions, i.e. half-planes and half-steps beside the step and the kink, where
an Ewald summation is not possible, a direct summation over corresponding crystal regions
was performed. The final equilibrium adsorption positions were determined by varying the
coordinates of the adsorbed F− ion and of the ions of the chosen adregion until a minimum of
the total energy of the system was obtained. More details about the calculational procedure
can be found in [15] and [20].

For the terrace case, the starting and final coordinates of the adion and of the ions of
the adregion, as well as the total spatial displacements, are compiled in table 1. For the
step and kink cases, corresponding coordinate values may be requested from the authors. In
table 1 (compare also figure 1), the coordinates are given as normalized values, where one unit
corresponds to the lattice constant a0 of CaF2. It is seen that the relaxations concern essentially
ions in the immediate vicinity of the adion. They amount to maximal values of about 0.07
length units (0.4 Å) and decrease strongly with increasing distance from the adion.

Figure 2 comprises the resulting positions of the F−
ad ion for the adsorption at the terrace

(T), step (L) and kink (K) sites. It is seen that in the terrace and kink positions the fluorine adion
is located above calcium ions of the outermost triple layer while at the step it is adsorbed above
a calcium in the [110] direction of the (110) mini-facet. In the terrace and kink cases these
positions correspond, in essence, to the usual continuation of the lattice in the [111] direction.
In the step case the adsorption position is determined mainly by the especially strong interaction
energy with the underlying calcium ion (compare [15]). A virtual slight shift in the direction
towards the upper terrace would, however, also result in a position corresponding to a lattice
continuation in the [111] direction. At the kink the adsorbed fluorine ion fills up a position at
the end of the lower fluorine row of the mini-facet. In this way, the initially electrical neutral
kink [15] is transformed into a negatively charged one.



Frenkel–Debye layer at CaF2(111) 5809

Figure 2. Adsorption positions of a fluor adion (white) at the terrace (T), the [101̄]-type I step (L)
and the kink at the [101̄]-type I step (K) on the CaF2(111) surface; calcium ions: black, fluorine
ions: grey.

Figure 3. Energy term scheme for a fluorine ion in bulk (B), interstitial (I), kink (K), step (L)
and terrace (T) positions with respect to the vacuum level (V) at 0 eV. The numbers in parentheses
indicate the energy differences at the above positions relative to the bulk state.

The adsorption energies, Ead, in the above positions (table 2) are made up of two
contributions. The first term is the interaction energy, Eint, of the adion with the additionally
relaxed terrace, step and kink environment and the remaining crystal and the second one the
relaxation energy of the adregion, E rel

reg. This latter term is always positive, because it represents
the difference in energies of the adregion (or the crystal) in the final state with adsorption and its
initial ‘crystal relaxed’ state without adsorption. As expected, the adsorption energy increases
from the terrace over the step to the kink position. The relatively low value of the relaxation
energy of the adregion for adsorption at the step of 0.77 eV is remarkable. This is an indication
of the strong bonding of the ions of this (110) mini-facet, and hence of the stability of this step
configuration.

The different bulk and surface energy levels for a F− ion, which are of interest in the
present connection, are compiled in figure 3 with respect to a vacuum level. As was mentioned
in the preceding section, the potential above the relaxed infinite (111) surface of CaF2 without
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adsorption amounts to +0.35 V, so that, with respect to this level, all desorption energies at
the surface should be reduced correspondingly. In the present case, however, surface and
bulk values, for convenience, are referred to a uniform vacuum level at 0 V. Moreover, for
a calculation of the FD space-charge layer at CaF2(111), only the energy differences of the
adsorption sites to the normal bulk lattice site at −4.85 eV below the vacuum level [21] are
of importance. These differences are indicated by arrows in figure 3, while corresponding
numerical values are given in parentheses.

4. The Frenkel–Debye layer for CaF2(111)

4.1. Semi-infinite crystal

With the above values for the first time concrete properties of the FD layer for an ionic crystal,
here for the (111) surface of CaF2 (ε = 6.79 [26]), will be characterized. Defect energies in
the bulk of CaF2 were determined theoretically by Catlow et al [21]. For the formation energy
of anion vacancies, i.e. for the energy to remove a fluorine ion from its normal lattice position
to infinity leaving a vacancy, they obtained a value of 4.85 eV and for the energy to introduce a
fluorine from infinity into an interstitial lattice site a value of −2.10 eV. With this, the formation
energy of an anion Frenkel pair results as the sum of both energies to 2.75 eV. The energies
to bring a calcium ion from a lattice site to infinity as well as to an interstitial position are,
at 23.17 and 8.0 eV [21], respectively, quite large. Additionally our own calculations of the
adsorption energies of the Ca2+ ion at the different surface sites yield the following values:
−5.48 eV at the terrace, −6.97 eV at the step, −7.13 eV at a neutral kink and −14.32 eV
at a negatively charged kink, i.e. at a kink with adsorbed fluorine, compare figure 2. For the
transition of a cation from the bulk to the surface, therefore, at least an energy of 8.9 eV is
needed, which shows that the concentrations of cation vacancies are low. They can, therefore,
be neglected in the present discussion.

The results of the calculations for the FD layer under consideration of fluorine ions in
different surface, as well as in interstitial, positions are comprised of the following. The
temperature dependence of the Debye length,which depends not on the specific surface features
but only on the formation energy of the Frenkel pair (see equation (A.14)) results in

κ−1 = 6.82 × 10−11
√

T exp(7978/T ) cm. (14)

This value is a measure of the extension of the space-charge region into the crystal. It amounts
to about 10−5 cm at 1000 K and to about 1 cm at 400 K. At room temperature κ−1 reaches a value
of about 10 m. For such low temperatures the results for the thin layer must be used. However,
apart from the fact that at low T thermodynamical equilibrium will hardly be achieved within
experimental times because the diffusion processes will be more or less frozen, here the defect
concentrations should be dominated by impurity effects.

Figures 4–6 show the potential differences between bulk and surface of the semi-infinite
crystal as well as the concentrations of the fluorine adions at the kinks and steps as a function
of the temperature with the step distance λ as a parameter. Terrace concentrations are not
given because their values are lower by a factor of, at least, 104 than those at the kinks and
steps. The experimentally accessible range of 10−6 < λ < 10−5 cm is shaded in the figures.
The potential in the bulk (figure 4) is always positive with respect to the surface. Its value in
the experimentally accessible range lies between 0.23 and 0.53 V for temperatures between
400 and 1400 K. It is considerably lower than that for a completely roughened surface with
λ = 10−8 cm. In figure 5, beside the adion concentration at the kinks nk (full lines) the total
density of kinks Nk (broken lines) in dependence on the temperature and the step distance is
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Figure 4. The potential difference �∞ between bulk and surface as a function of temperature for
different step distances λ as a parameter. The region of experimentally accessible step distances is
shaded.

Figure 5. The density of fluorine ions nk in the kinks (full lines) and the total density of the kinks
Nk (broken lines) as a function of temperature.

also given. The comparison of both quantities shows that, for λ � 10−7, practically all kinks
are occupied by an additional fluorine ion, i.e. all neutral kinks become negatively charged
ones. This is surprising, because in a recent calculation of the kink configuration it turned out
that the neutral kink had the lowest formation energy [9]. In those calculations, however, only
surface properties were included. For constant temperature the concentration of fluorine adions
in the kink sites (or that of negatively charged kinks) increases almost inversely proportional to
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Figure 6. The density of fluorine ions nl at the steps (full lines) as a function of temperature. On
the right axis total densities of step sites are indicated as broken lines.

the step distance. In the experimentally accessible range its concentration increases from about
5 × 107 at 400 K to about 5 × 1011/cm−2 at 1400 K. The concentration of adions at the steps
(figure 6) shows a corresponding increase from 3 × 108 to 2 × 1012/cm−2 in the same range.
A comparison with the total density of step sites Nl (broken lines indicated on the right axis
in figure 6) shows that the capacity of the steps for the adion accumulation is usually far from
being exhausted. Only for large step distances of 10−4 to 10−5 cm, and high temperatures, do
the adion concentrations approach the maximum step capacities. The fact that the kink and
step adion concentrations are of comparable orders of magnitude, although the energy to bring
a fluorine ion from the bulk to the kink is considerably lower than that for the adsorption at
the step (see table 1), can be interpreted by two facts: first, the formation energy of the kinks
(0.47 eV, compare section 3) also enters the problem; second, the probability of arranging the
adions at the step is considerably larger than that at the nearly filled-up kink sites.

As an example, the dependence of the bulk concentrations of the vacancies, nv, and
interstitials, ni, are plotted as a function of the distance from the surface in figure 7 for a
temperature of 750 K with the step distance λ as a parameter. Here, again, the experimental
accessible range is shaded. The bulk concentrations of both defects, which are given by

n∞
v = n∞

i = √
2Nb exp(−Ff/2kT ) = 2 × 1013 cm−3, (15)

are indicated as a broken line. The extension of the space-charge layer, κ−1, at this temperature
amounts to about 1 µm. While with decreasing distance from the surface the vacancy
concentration increases by a factor of about 450–2100 for λ = 10−5–10−6 cm, the interstitial
concentration shows a corresponding decrease, so that the product of both concentrations
remains constant throughout the space-charge region. However, due to the increase of the
anion vacancy concentration on approaching the surface, the sum of both charge carriers
increases considerably above that in the bulk. This should cause, in addition, an increased
ionic conductivity in the near-surface region of the crystal as well as in thin fluorite crystal
layers [13]. The latter case will be treated in the next section in greater detail.
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Figure 7. Concentrations of vacancies and interstitials, nv and ni, for a temperature of 750 K as
a function of the distance from the surface. The broken curve on the right axis indicates the bulk
value of both concentrations. The extension of the space-charge layer κ−1 at this temperature is
indicated at the bottom axis,

4.2. Thin CaF2 layer

Because of the fundamental interest in the physical and chemical properties of thin layers,
among others in their electrical conductivity, compare section 1, the calculations were extended
to the case of thin mono-crystalline CaF2 layers (thickness: 2L) with two free (111) surfaces.
Results for a temperature of the CaF2 layer of 750 K and a mean step distance λ = 5×10−6 cm
on both surfaces are discussed in the following. (This temperature was chosen because it is
close to the middle of the temperature range, for which experimental conductivity data are
known, see figure 11.) Figure 8 shows a comparison of the potential �L for different L
(broken curve) with the near-surface course of the potential �(x) for a crystal with unlimited
thickness (full curve). With increasing thickness of the layer �L approaches the potential �∞
for x → ∞ indicated on the right axis. In addition, the course of the potential �(x) in a layer
of thickness 2L = 2 × 10−4 cm (dotted curve) is given. The largest absolute deviation of
the layer potential from that of an unlimited crystal occurs at x = L, while with decreasing
distance from the surface the layer potential adopts that of the unlimited crystal.

Figure 9 shows a corresponding comparison of the courses of the fluorine vacancy and
the interstitial concentrations of the 2 × 10−4 cm thick layer with those in the near-surface
region of an unlimited crystal. Also the concentrations approximate those of the unlimited
crystal for decreasing distance from the surface. It may be seen from this figure that the total
of the mean vacancy and interstitial concentrations in this layer is, due to the overlapping of
the space-charge regions at both surfaces, larger than in the space-charge region of the semi-
infinite crystal. In figure 10 the surface concentrations nk, nl and nt are given as functions
of the layer thickness. Since, with decreasing L, the total charge in the layer decreases, the
surface charges show a corresponding decrease. Under the present conditions it is remarkable
that this decrease becomes distinct at the step and terrace concentrations for L below about
1 × 10−5 cm. The kinks, in contrast, because of their low energy difference with respect to the
bulk sites (compare figure 3), remain nearly saturated.
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Figure 8. Comparison of the potential �L of a CaF2 layer of thickness 2L as a function of L (broken
curve) with the potential �(x) for infinite thickness of the crystal (full curve) for T = 750 K and
a mean step distance λ = 5 × 10−6 cm. As an example, the course of the potential �(x) for a
2L = 2 × 10−4 cm thick layer is given (dotted curve). �∞ for this temperature and step distance
is indicated on the right axis.

Figure 9. Comparison of the vacancy and interstitial concentrations, nv and ni, respectively, for a
2L = 2 × 10−4 cm thick layer (broken curves) with the concentrations for infinite thickness (full
curves), compare also figure 7, as a function of x for T = 750 K and λ = 5 × 10−6 cm.

The mean electrical conductivity of a thin CaF2 layer of the half-thickness L can be
calculated from the mean vacancy and interstitial concentrations, n̄v(L) and n̄i(L), according
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Figure 10. Dependence of the kink, step and terrace concentrations, nk, nl and nt , of F−
ad ions on

the surface on the thickness of a 2L thick CaF2 layer for T = 750 K and λ = 5 × 10−6 cm.

Figure 11. Mean ion conductivity, σL T , of thin CaF2 layers as a function of the temperature for
different half-thickness L (full lines). Broken line: bulk conductivity of CaF2 [27]; dotted line:
experimental mean conductivity of a 500 nm thick CaF2 layer [28]; symbols: conductivity data for
grained CaF2 (squares: rgrain = 0.2 µm, circles: rgrain = 9 nm) [18].

to

σL = σ∞
v

n̄v(L)

n∞
v

+ σ∞
i

n̄i(L)

n∞
i

, (16)

where σ∞
v and σ∞

i are the conductivities and n∞
v = n∞

i the concentrations of the vacancies
and interstitials, respectively, in the bulk of the crystal. The product of the overall conductivity



5816 H Dabringhaus and M F Butman

and the temperature, σL T , for different half-thickness, L, of the CaF2 layer was calculated,
again for a step distance of 5 × 10−6 cm, using bulk conductivity data given by Bollmann and
Reimann [27], see the full lines in figure 11. Beside the bulk conductivity (broken line) [27]
this figure also includes experimental data obtained for an about 500 nm thick epitaxial CaF2

layer on an Al2O3 substrate using a thin intermediate BaF2 layer (dotted line) [28] as well as
conductivity data of differently grained CaF2, rgrain = 0.2 µm (squares) and rgrain = 9 nm
(circles) [18]. The observed increase in conductivity with decreasing layer thickness and
grain size, respectively, which is also found in studies with alternating CaF2/BaF2 layers of
different thickness [28], is a clear indication of the overlapping space charges. The difference
of the conductivity of the fine-grained material compared with that of the theoretical thin layer
results for λ = 5 × 10−6 cm may be attributed: (i) to a different number of surface sites for
the take-up of excess fluor ions, (ii) to the fact that, for a grain, which has finite extensions in
three dimensions, the overlapping should be yet larger, and (iii) to an increasing part of the
ionic conductivity on the surface itself. The decreasing slope of the fine-grained material at
higher temperatures is attributed to grain coarsening [18]. In all, a good correspondence of
our theoretical results with experimental conductivity data is achieved, which may be seen as
a confirmation of our above derivations.

5. Conclusions

In the present paper the properties of the FD layer at the surface of a fluorite type crystal with
anti-Frenkel disorder were examined theoretically. Numerical calculations were performed
for the (111) surface of a semi-infinite pure (undoped) CaF2 crystal as well as for thin CaF2

layers with free (111) surfaces considering realistic step and kink concentrations. For this the
determination of the adsorption positions and energies of the fluor ion at sites on the terrace and
at the ledge and kink was also necessary. The calculations have shown that steps and kinks are
likewise responsible for the take-up of the excess fluor ions on the surface, whereas the terrace
plays no role. For experimentally accessible conditions, i.e. for step distances between 10−6

and 10−5 cm, the electrical potential between surface and bulk, and with it the variations of
the anion vacancy and interstitial concentrations in the surface layer, are considerably reduced
against those for an unlimited number of available surface sites. Nevertheless, also for realistic
step distances due to the increased concentrations of the anion vacancies a strongly increased
near-surface ionic conductivity is expected. This is of importance above all for the ionic
conductivity of thin layers and nano-crystalline material, whose experimental conductivity
data show a good correspondence to our results.

Epitaxial layers of CaF2 are presently being investigated as protecting and intermediate
layers on semiconductors (compare section 1). Though the specific interface will strongly
influence the characteristics of the isolator layer the present calculations may serve as a first
approximation and/or as a standard with which actual results may be compared. Increased ion
conductivities were recently reported by Sata et al [28] for heterolayered films of CaF2 and
BaF2 (see above). It is known from our own studies of heteroepitaxial systems that growth of
the guest component starts usually at the steps on the substrate surface [29, 30]. This should
occur also for BaF2/CaF2 epilayers. In this way, kink and step sites may be blocked for an
incorporation of excess anions. However, the misfit of 13.5% between both lattices, which
should be accommodated within the first grown layers by misfit dislocations, may serve for
a sufficient number of adsorption sites at the interface. It cannot be excluded that, due to
this relatively large misfit, an increased number of adsorption sites compared to that at a free
surface may be present. For BaF2/CaF2, in addition, further effects due to the different bonding
energies in normal and interstitial lattice sites in both components are expected.
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Besides conductivity measurements, an experimental proof of the course of the potential
in the space-charge region may be performed by studying the distribution of small amounts of
an aliovalent tracer [31, 32] dissolved in the crystal. In general, the above calculations may be
further extended to the extrinsic case, i.e. to a doping with aliovalent cations and also to the
case of the formation of defect clusters, which will occur, above all, at lower temperatures.
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Appendix A

For the determination of the minimum of the Gibbs free energy given in equation (1) the
condition of electrical neutrality is introduced in this equation by the method of the Lagrange
multiplier α. The variation of

δG̃ = δ

{
G + α

[
nk + nl + nt −

∫ ∞

0
[nv(x) − ni(x)] dx

]}
(A.1)

is produced by a set of independent variations δnν in nν , ν = v, i, k, l, t:

δG̃ =
∫ ∞

0

{
δni(x)[Ff + α] − δnv(x)α + 1

2δ[ρ(x)�(x)]

− δnv(x) kT ln
2Nb

nv(x)
− δni(x) kT ln

Nb

ni(x)

}
dx

+ δnk[Fk + α] + δnl[Fl + α] + δnt[Ft + α]

− δnk kT ln
Nk − nk

nk
− δnl kT ln

Nl − nl

nl
− δnt kT ln

Nt − nt

nt
. (A.2)

The variation of the electrostatic energy yields [3]

1
2

∫ ∞

0
δ[ρ(x)�(x)] dx = e

∫ ∞

0
�(x)[δnv(x) − δni(x)] dx . (A.3)

In the minimum of the Gibbs free energy δG̃ = 0 and the individual concentrations nν result
as

nv(x) = 2Nb exp

(
−e�(x) − α

kT

)

ni(x) = Nb exp

(
− Ff − e�(x) + α

kT

)

nk = Nk

{
1 + exp

(
Fk + α

kT

)}−1

nl = Nl

{
1 + exp

(
Fl + α

kT

)}−1

nt = Nt

{
1 + exp

(
Ft + α

kT

)}−1

.

(A.4)

Whereas here bulk vacancy and interstitial concentrations are assumed to be small against the
density of total bulk sites, i.e. nv, ni � Nb, the formulation for nk, nl, and nt considers the fact
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that these concentrations may be of the same order of magnitude as the total numbers of kink,
step and terrace sites, Nk, Nl and Nt , respectively. In the bulk (for large x) the space-charge
vanishes, i.e.

ρ∞ = 0, (A.5)

which corresponds to

n∞
v = n∞

i (A.6)

or, according to equation (A.4), to

2 exp

(
−e�∞ − α

kT

)
= exp

(
− Ff − e�∞ + α

kT

)
, (A.7)

where �∞ = �(x = ∞). Defining

Fv = −kT ln 2 (A.8)

it follows from equation (A.7) that

exp

(
− Fv + e�∞ − α

kT

)
= exp

(
− Ff − e�∞ + α

kT

)
. (A.9)

The Lagrange multiplier results then as

α = Fv − Ff

2
+ e�∞. (A.10)

Replacing α in equations (A.4) Poisson’s equation (5) can be rewritten as

d2

dx2

{
e�(x) − e�∞

kT

}
= 4πe2 Nb

εkT
exp

(
− Fv + Ff

2kT

)

×
{

exp

(
e�(x) − e�∞

kT

)
− exp

(
−e�(x) − e�∞

kT

)}
. (A.11)

The solution of this second-order linear differential equation for �(x) proceeds by analogy to
previous analyses (see, e.g., [3]). With the abbreviations

z(x) = {e�(x) − e�∞}/kT, (A.12)

s = κx, (A.13)

κ2 = 8
√

2πe2 Nb

εkT
exp

(
− Ff

2kT

)
, (A.14)

where the Debye length κ−1 gives the extension of the near-surface region, in which
the potential and the defect concentrations deviate from the bulk values, one can write
equation (A.11) as

d2z/ds2 = sinh z. (A.15)

With the boundary condition

dz/ds|∞ = 0, corresponding to d�(x)/dx |∞ = 0, (A.16)

the first integration of (A.15) results as

ds = − dz√
2(cosh z − 1)1/2

(A.17)

and the final solution as

ln

{
exp(−z/2) + 1

exp(−z/2) − 1

}
= s + ln

{
exp(−z0/2) + 1

exp(−z0/2) − 1

}
, (A.18)
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where z0 = −(e�∞/kT ). Here, without loss of generality, the potential at the surface is set
as �(0) = 0. This equation can be solved to z:

z = 4 tanh−1{exp(−s) tanh(z0/4)} (A.19)

with

tanh−1(ξ) = 1

2
ln

(
1 + ξ

1 − ξ

)
for − 1 < ξ < 1. (A.20)

The potential �∞ between surface and bulk is connected with the actual surface charge. For the
determination of �∞ we start from the correspondence between surface charge and potential
gradient at the surface:

σ = − ε

4π

d�

dx

∣∣∣∣
x=0

. (A.21)

From equation (A.17) using (A.12) the gradient of the potential at the surface is obtained as

d�

dx

∣∣∣∣
x=0

= −
√

2κkT

e

{
cosh

(
−e�∞

kT

)
− 1

}1/2

, (A.22)

from which the surface charge

σ = εκkT

2πe
sinh

(
−e�∞

2kT

)
(A.23)

results. From this equation with (3) and (7) after replacing Fv, α, and κ according to
equations (A.8), (A.10) and (A.14), equation (6) for �∞ is obtained.

Appendix B

In the case of a thin layer of extension 2L with the boundary equation

dz/ds|L = 0, (B.1)

compare equation (8), a first integration of the normalized Poisson equation (A.15) yields

ds = − 1√
2

dz

(cosh z − cosh zL)1/2
, (B.2)

from which the solution of (A.15) results as [3]

s = k̃ F

(
sin−1

{
cosh z0 − cosh zL

cosh z0 − 1

}1/2

, k̃

)
− k̃ F

(
sin−1

{
cosh z(s) − cosh zL

cosh z(s) − 1

}1/2

, k̃

)
, (B.3)

where F(φ, k̃) is the incomplete elliptic integral of the first kind, φ being the first argument in
the parentheses, and with

k̃ =
(

2

cosh zL + 1

)1/2

, (B.4)

z0 = z|s=0 = −e�̃∞/kT, (B.5)

and

zL = κ L = {e�L − e�̃∞}/kT, (B.6)

where �L denotes the potential at x = L. Here, �̃∞ is rather a parameter corresponding to the
Lagrange multiplier α. It takes values, which are larger than the potential difference between
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surface and bulk in the semi-infinite case, see section 2.1. However, for increasing layer width,
�̃∞ and �L approximate to the semi-infinite value �∞.

Because of the complexity of the interdependence of the different parameters encountered
in this problem our practical proceeding for the evaluation shall be shortly outlined. Choosing
an arbitrary value for �̃∞ � �∞ with equation (9) a corresponding value of �L is calculated.
With these values, instead of using the solution (B.3), we perform a complete integration of
equation (B.2), which leads for the left-hand side to s. Numerical integration of the right-hand
side with respect to z yields z(s) and �(x), respectively. For an integration up to an upper
limit of zL this integral also determines the value of L belonging to the chosen parameter �̃∞.
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